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1  Introduction

The variation theory of learning (Marton 2015; Marton 
and Booth 1997) points to variation as a necessary compo-
nent in teaching in order for students to notice what is to be 
learned. Studies on how variation can be used to enhance 
students’ learning have been reported (e.g., Bartolini Bussi 
et  al. 2013; Huang and Yeping 2017; Marton 2015; Mar-
ton and Pang 2013; Sun 2011; Watson and Mason 2006). A 
conclusion drawn from these studies is that how the content 
is handled and what aspects are made possible to discern in 
a lesson affects what is made possible to learn. Analysis of 
‘what is made possible to learn’ from a lesson, we believe, 
also says something about ‘what is not made possible 
to learn’. What is and what is not made possible to learn, 
seen from a variation theory perspective, is often analyzed 
from classroom data in which the interaction between the 
teacher and the students in regard to the content taught is 
in focus. However, in the empirical illustration presented 
in this paper, we analyze the examples used by the teacher 
without taking into account the interaction, which we usu-
ally analyze (e.g., Kullberg and Runesson 2013). The data 
presented come from a larger study about mathematics 
and science teachers’ teaching after they are engaged in 
a theory-driven lesson study intervention of 1.5 years, in 
which they used variation theory. One finding is that teach-
ers, after participating in this particular professional devel-
opment, make other aspects of the content noticeable for 
the students through their teaching (Kullberg et  al. 2016; 
Nilsson 2014; Vikstrom 2014). The aim of this paper is to 
demonstrate how a lesson design can be analyzed from the 
point of view of the theory.
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2 � Variation theory as an instructional design 
principle

The point of departure of variation theory concerns the 
means with which we can help learners to handle novel 
situations in powerful ways (Marton and Pang 2006). 
Originating from the phenomenography tradition, vari-
ation theory posits that learning implies seeing or experi-
encing critical aspects of an object of learning (Marton and 
Booth 1997; Marton 2015). The object of learning provides 
answers to the question ‘What is to be learned?’ in three 
ways: it defines (1) the content, (2) the educational objec-
tive, and (3) what needs to be learned (critical aspects). The 
object of learning may be different for different learners.

Learning, from a variation theory point of view, implies 
differentiation rather than accumulation (cf., Gibson and 
Gibson 1955). Thus, variation theory spells out the con-
ditions of learning and explains learning failures in a spe-
cific way: when learners do not learn what was intended, 
they have not discerned the necessary aspects. So, the very 
core idea of variation theory is that discernment is a nec-
essary condition of learning: what aspects we attend to or 
discern are of decisive significance for how we understand 
or experience the object of learning. Discernment cannot 
happen without the learner having experienced variation, 
however. To discern and focus on aspects (or dimensions 
of variation), the learner must have experienced variation 
in those aspects. For instance, it is more likely that learn-
ers in a physics lesson (new situation) will identify that the 
letters in Ohm’s law ∪ = R × I represent variables if they 
have experienced algebraic expressions with letters other 
than just x representing variables in mathematics. If they 
have experienced equations with letters other than just x, 
it is more likely that they will discern that the letter may 
be arbitrarily chosen (cf., Häggström 2008). So, to make 
the (critical) aspect possible to discern, the teacher must 
open up the aspect as a dimension of variation (x could 
be replaced by other letters/symbols). Mason and Watson 
(2006) and Mason (2017) argue in a similar way: variation 
can structure sense-making by drawing attention to the tar-
geted aspects when teaching mathematics.

One of the most specific tenets of variation theory is that 
seeing differences precedes seeing sameness (Marton and 
Pang 2006, 2013). Marton and Pang (2013) state that when 
helping learners to make a novel meaning their own, such 
as when helping students to understand a new concept, we 
frequently point to examples that share the aimed-at mean-
ing but differ otherwise, for example, pointing to examples 
of linear equations and declaring, “This is a linear equa-
tion and this is a linear equation”. Marton and Pang (2013) 
argue against this view of developing new meanings from 
the experience of sameness, as variation theory claims the 
opposite:

You cannot possibly understand what Chinese is 
simply by listening to different people speaking 
Chinese if you have never heard another language, 
and you cannot possibly understand what virtue is 
by inspecting different examples of the same degree 
of virtue. Nor can you understand what a linear 
equation is by looking only at linear equations. 
(p. 25)

From a pedagogical/instructional point of view, fol-
lowing this principle of the experience of difference 
before sameness has certain implications. For instance, 
to understand the concept of a linear function y = mx + b 
one needs to know how it differs from non-linear func-
tions. Otherwise it is merely a synonym for ‘function’. 
Similarly, a triangle must be compared to a circle or any 
other shape to have a meaning of its own. In variation 
theory, comparing two concepts involves a particular pat-
tern of variation called ‘contrast’. One could argue that 
this is similar to counter examples, which are often used 
in mathematics to justify conjectures and generalizations.

In lesson designs premised on variation theory, contrast 
(which could be a counter example) is used with a specific 
aim: to help learners acquire novel meanings by opening 
up appropriate dimensions of variation (see Marton and 
Pang 2013; Marton 2015). Contrast has to be followed by 
generalization. To generalize the idea of a function, for 
instance, one must experience sameness, certain defin-
ing aspects, of different functions. Thus, in order to see 
not just one instance of function as a function, you must 
see the same set of aspects within different functions and 
the part-whole relation between those aspects, as a com-
monality across various instances you encounter. In this 
way, defining aspects are separated from the particular 
instance and a generalization can be made. As far as this 
pattern of variation is concerned, the targeted aspect is kept 
invariant while other aspects vary. So, for instance, if the 
aspect ‘slope’ is opened up as a dimension of variation, it 
is made possible to experience that a linear function could 
have different slopes by varying the m-value (different 
positive/negative values) and keeping the b-value invari-
ant. However, understanding the object of learning implies 
understanding the object as a whole and thus involves a 
simultaneous discernment of the defining aspects and their 
relationship. When dimensions of variation corresponding 
to several critical aspects are opened up simultaneously, 
fusion can take place. Marton (2015) suggests a prototype 
for how to sequence patterns of variation and invariance 
to bring about learning, as follows: starting with the undi-
vided object of learning, usually a problem to solve aiming 
at getting the learners acquainted with the situation or what 
is to be mastered, followed by contrast, generalization and 
finally fusion (p. 263).
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So, what this boils down to is a conjecture suggesting 
that patterns of variation and invariance and how these 
are sequenced, which are inherent in tasks, examples, 
illustrations and interactions between teachers and learn-
ers, are of decisive importance for what is made possible 
to learn. When these principles are used for instructional 
design, many of the ideas about teaching which are taken 
for granted by teachers are challenged, such as, for instance 
“teaching one thing at a time” (Zhang 2009), “never making 
use of incorrect answers to make a contrast” (Ekdahl and 
Runesson 2015) or “always starting with sameness instead 
of differences” (Marton and Pang 2013). When guided by 
variation theory in planning for learning, the teacher must 
become aware of not just what the critical aspects might be, 
but how to open them up as dimensions of variation and to 
determine what values in those dimensions would be criti-
cal. However, in addition to affording patterns of variation 
in sets of examples, it is also important that teaching draws 
attention to those patterns (Kullberg et al. 2014). Students 
can also open up dimensions of variation when working 
individually (Runesson 2006), or in group or whole-class 
discussions (Kullberg 2012).

When analyzing how the object of learning is handled 
during teaching, the ‘intended’, the ‘enacted’, and the 
‘lived’ objects of learning are used to differentiate between 
the teacher’s particular goal and intention regarding what 
the students should learn (intended object of learning), 
what is made possible to learn in the lesson (the enacted 
object of learning), and what the learners actually learn 
(lived object of learning). Even if the teacher plans to enact 
an object of learning in a certain way, this may be different 
from what is actually made possible for the learners to dis-
cern in the classroom.

3 � Variation and exemplification

The benefits of using multiple examples rather than only 
one example in mathematics education, in regard to stu-
dent learning, have been argued by several scholars (e.g., 
Dienes 1960; Gentner 2005; Rittle-Johnson and Star 2009; 
Schwartz and Bransford 1998). It has been found that two 
examples are better than one, and that two examples pre-
sented together are better than two examples presented 
separately (Rittle-Johnson and Star 2009, p. 529). The vari-
ability of the examples compared is of importance in order 
for multiple examples to be effective (Rittle-Johnson and 
Star 2009). An important question to consider in relation to 
these findings is “When two examples are to be compared, 
what dimensions of the examples should vary and what 
dimensions should remain the same?” (ibid., p. 530). It has 
been shown that the use of mixed examples (examples of 
different types) facilitates student learning more than the 

use of multiple examples of the same type (Hatala et  al. 
2003; Kornell and Bjork 2008; Rohrer and Pashler 2010; 
Schmidt and Bjork 1992; Taylor and Rohrer 2010). When 
different types of tasks or examples are mixed, the learners 
are forced to distinguish between them and thus get better 
at making sense of novel tasks and examples. Other studies 
have shown that students’ prior knowledge affects learning 
when comparing multiple examples (Rittle-Johnson et  al. 
2009), and when a mix of correct and incorrect examples 
is used in worked examples (Große and Renkl 2007). It has 
been argued that differences in the examples used that are 
too difficult to align can be less beneficial for student learn-
ing (Gentner and Markman 1994).

Watson and Mason (2006) argue that a mathematical 
exercise, e.g., a collection of questions or tasks, is to be seen 
as one single (mathematical) object, as follows: the task as 
a whole (or collection of questions), which is focused on 
by the students and the teacher during a lesson, and upon 
which the learner acts intelligently and mathematically, by 
observing, analyzing, exploring, questioning, transforming, 
etc. Watson and Mason suggest that it is the structure of the 
exercise as a whole, not the individual items, that promotes 
common mathematical sense-making (p.  97). They argue 
that “tasks that carefully display constrained variation are 
generally likely to result in progress in ways that unstruc-
tured sets do not” (p. 92), and that wisely planned variation, 
for instance in a task or set of examples, can make certain 
aspects noticeable for the learner. “Constructing tasks that 
use variation and change optimally is a design project in 
which reflection about learner response leads to further 
refinement and precision of example choice and sequence” 
(p.  100). Watson and Mason (2006, p.  109) suggest that 
carefully designed sequences of examples with systematic 
variation can make it possible for students to discern simi-
larities and differences. The use of systematic variation in 
examples for mathematics teaching in regard to students’ 
learning has been studied within a variation-theory frame-
work (e.g., Al-Murani 2007; Goldenberg and Mason 2008; 
Gu et al. 2004; Guo et al. 2012; Huang et al. 2016; Pillay 
2013; Rowland 2008; Watson and Chick 2011). Findings 
from these studies indicate that variation theory as a design 
principle can make certain aspects of the content noticeable 
for the learner and thereby enhance learning. For exam-
ple, we see this result in Pillay’s (2013) study of teachers 
who used variation theory in a theory-driven lesson study 
(learning study) about functions in Grade 10. In an iterative 
process, the teachers planned, analyzed, and revised one 
single lesson about linear and exponential functions three 
times. The team found that when examples of different 
types of functions (linear and exponential) were presented 
and classified one at a time in a lesson, this had less effect 
on student learning than when different types of functions 
were discussed simultaneously (linear and exponential 
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functions). A conclusion was that taking two types of func-
tions at the same time seems to provide enhanced opportu-
nities for noticing and distinguishing critical aspects of the 
types of functions, compared to when they were discussed 
one function at a time.

Rowland (2008) argues that “examples provided by 
a teacher ought, ideally, to be the outcome of a reflective 
process of choice, a deliberate and informed selection from 
available options, some ‘better’ than others” (p. 151). How-
ever, studies indicate that examples used in teaching may 
not be planned in great detail nor are they the subject of 
deeper reflection. A study of prospective elementary school 
teachers’ examples showed that the choice of examples 
was randomly made (Rowland 2008; Rowland et al. 2003). 
Rowland (2008) found that examples used in some cases 
did not provide the opportunity for the students to distin-
guish between aspects of what was taught. For instance, 
when (1, 1) was used by one prospective teacher as coordi-
nates in a Cartesian coordinate grid, it was not possible to 
distinguish between the x- and y-values. Other coordinates, 
e.g., (1, 2) followed by (2, 1) would have provided a better 
opportunity to discern differences between the axes. From 
the theoretical standpoint taken, we argue that which exam-
ples are chosen and how they are enacted together with stu-
dents, are of decisive importance. Zodik and Zaslavsky’s 
(2008) study indicates that teachers’ choices of examples 
are seldom discussed. In a study of five in-service teach-
ers’ choices of examples, it was found that the teachers 
had never talked about their use of examples in pre-ser-
vice training or with other colleagues in the school (Zodik 
and Zaslavsky 2008). In the following section, we give an 
empirical illustration of one teacher’s teaching after he 
had worked with variation theory as a design principle for 
teaching. We use the Goldenberg and Mason (2008) notion 
of instructional example space to describe the examples 
teachers use, e.g., in a task. Goldenberg and Mason argue 
that teachers’ example construction, pre-planned or done 
by the teacher in the heat of the moment, “reveals a good 
deal about the teacher’s accessible example space in that 
situation, and hence the scope of their awareness and the 
focus of their attention” (p.  189). The examples used say 
something about what the teacher knows and wants her stu-
dents to notice and pay attention to. We analyse one teach-
er’s instructional example space in order to see what pat-
terns of variation the teacher enacted, and what was made 
possible to learn in lessons about the same topic on two dif-
ferent occasions.

4 � Teaching with variation

In this section, we report on empirical data from a research 
project about mathematics and science teaching in which 

teachers used variation theory as a design principle (Kull-
berg 2016; Kullberg et  al. 2016; Runesson and Kullberg 
2017). We analyzed lessons taught in Grade 7 (13-year-old 
students) before and after teachers had been engaged in 
learning studies. In a learning study (Cheng and Lo 2013; 
Marton 2015; Marton and Pang 2006; Lo 2012), a team of 
teachers systematically plan, enact, analyze and revise a 
lesson in order to help the students to learn the intended 
object of learning. One significant difference between a les-
son study (Lewis et al. 2009; Yoshida 1999) and a learning 
study is that the teachers use variation theory (or another 
theory) as a tool to plan and analyze lessons. For 1.5 years, 
a total of twelve secondary-school teachers in four teams 
worked together with one researcher per team. The teach-
ers were subject experts certified to teach mathematics in 
lower secondary schools. The schools were public schools 
with heterogeneous classes. Although the majority of the 
students had Swedish as their first language, there were 
students with other ethnic and linguistic backgrounds in 
all classes. The schools were located in suburban areas of 
larger cities in four different parts of Sweden. Each team 
conducted three learning studies, one each semester, on dif-
ferent topics in mathematics or natural science. For each 
learning study, the teachers met for about seven meetings in 
which they pre-planned the study, designed pre- and post-
tests, planned and revised three lessons and finally summa-
rized their findings. In each study, one lesson was carefully 
planned, implemented in one class by one of the teach-
ers in the team, analyzed and revised collaboratively, and 
enacted in another class (second lesson) by another teacher. 
The second lesson in the iterative cycle was analyzed and 
revised, and finally a third lesson was planned and enacted 
in a third class. In the process, the teachers identified criti-
cal aspects for students’ learning of the object of learning. 
The team planned the lessons collaboratively and col-
lected information from pre- and post-tests to analyze how 
the teaching affected their students’ learning (cf., Guskey 
2002). They used ideas from variation theory to design the 
lessons; for instance, they were aware of some patterns of 
variation, e.g., contrast and generalization, and the idea 
of identifying critical aspects for students’ learning. Our 
research interest in this study was to explore whether and 
in what way the intervention affected the teachers’ individ-
ually planned teaching. We assumed that it is possible to 
study aspects of what teachers learned from participating 
in the theory-driven professional learning community via 
analysis of their teaching as “knowing-in-action” (Schön 
1983) or knowing as a disposition to act (Ryle 1949/2002). 
To explore changes in teaching practice, classroom data 
from before and after the learning study intervention was 
collected and analyzed. One individually planned and 
enacted lesson (Lesson 1) on a topic of the teacher’s choice 
before the intervention, and one lesson (Lesson 2) on the 
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same topic two years later, were video recorded. We identi-
fied similar differences in ten of the twelve teachers’ teach-
ing after the intervention, in terms of how the content was 
handled during the lessons (Kullberg et al. 2016). Two of 
the twelve teachers were excluded from the analysis, one 
because she changed the topic taught in the two lessons, 
and the other because he taught the two lessons by follow-
ing a textbook when doing laboratory work. Although in 
the ten analyzed cases, the teachers taught different top-
ics, they taught concepts in relation to other relevant con-
cepts in Lesson 2, whereas in Lesson 1, one concept was 
taught at a time. We further studied the examples used 
before and after the intervention on a micro-level. In this 
paper, we give an empirical illustration and analysis of one 
teacher’s teaching of a method for solving equations with 
one unknown.

4.1 � Differences in what was made possible to discern

There were general similarities between Lesson 1 (L1) and 
Lesson 2 (L2). For instance, the lessons were about the 
same length and the same method (cancellation) for solv-
ing equations with one unknown was taught. In both les-
sons, the students worked with creating equations with 
one unknown for a fellow student. We focused on similari-
ties and differences in enacted example spaces in order to 
explore, on a micro-level, effects of the intervention on 
teaching practice. We analyzed the examples introduced by 
the teacher during whole-class discussion using a variation-
theory framework (Marton 2015). Our analysis shows that 
the enacted object of learning, and thereby what was made 
possible to learn in the lesson, had changed. In L1, the 
object of learning entailed primarily the method and proce-
dure for solving, by finding answers to equations with one 
unknown. When the same teacher taught L2 on the same 
topic after the intervention, the answers to the equations 
used in the lesson were already known, and the object of 
learning was instead about understanding the structure of 
an equation: how an equation can be created and the opera-
tions used in solving it.

The teacher also articulated these differences between 
the lessons. With regard to the intended object of learn-
ing in L1, he said that he wanted the students to be “more 
secure in the method (cancellation), …, but it is more than 
the method I am after, …, they should see that it is possible 
to solve an equation, see the use of it, that it is a good way, 
that it falls into place so to say.” After the intervention, he 
said about L2: “My point is that if you understand what 
an equation is and how it is structured then you are able 
to solve them … you can teach them a method to solve the 
equation without them really understanding what an equa-
tion is, because you teach them a method that gives a result, 
but the question is if they have foundational understanding 

of what an equation is”. We suggest that the teacher, in 
this case, has changed the intended and enacted objects of 
learning, and his view on what students need to learn in 
order to be able to solve equations with one unknown. In 
the following analysis, we show how the tasks and exam-
ples used made it possible for the students to discern differ-
ent aspects (dimensions of variation).

4.2 � Lesson 1

Our analysis of Lesson 1 suggests that the enacted object 
of learning and what dimensions of variation were opened 
up primarily brought out the process of solving equations 
with one unknown. The teacher, together with the students, 
solved one numerical equation with iconic representation 
(Task 2) and two equations made from word problems 
(Task 4), using the method of cancellation. In the following 
section, the tasks and which aspects are varied/invariant in 
the enacted sets of examples are analyzed.

4.2.1 � Solving equations with different numbers

In Task 1 (see below), several examples of equations with 
different numbers on each side of the equal sign were 
solved and discussed, one after the other, in order to illus-
trate equality. In the two first examples, 12 is invariant, but 
the side on which twelve is placed is varied as well as the 
factors that multiply to give 12. Hence, in the first three 
examples of equations, the teacher varied the numbers, the 
order of numbers, and the number of factors on each side 
of the equal sign, while keeping the equality/equal sign 
invariant.

1.	 3 × 4 = 12
2.	 12 = 3 × 2 × 2
3.	 12 × 2 = 3 × 2 × 2 × 2
4.	 3 × 6 = 18 × 2 = 36 3 × 6 ≠ 18 × 2 = 36

This was followed by one example (see example no. 4) 
in which the teacher made a contrast between an incorrect 
(3 × 6 = 18 × 2 = 36, ‘to show steps in a calculation pro-
cess’),1 and a correct way (3 × 6 ≠ 18 × 2 = 36) of using the 
equal sign. In this case, the meaning of the equal sign var-
ied, compared to the previous equations, and a new sign 
representing inequality was introduced. It was made possi-
ble to discern that, although represented differently, all 
parts of the equation must have the same value in order for 
the equal sign to be used correctly.

1  This incorrect way of using the equal sign ‘to show steps in a calcu-
lation process’ is commonly used by Swedish students in this grade.
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4.2.2 � Solving equations with different representations

Task 2 introduced two ways of solving the equa-
tion  3x + 5 = 20 with the method of cancellation. The 
teacher showed one iconic representation of the solv-
ing process and he also solved the equation numerically 
(Fig. 1). The iconic representation initially showed a scale 
with three boxes and five stones on the left hand side and 
twenty stones on the right hand side.

In this task, the representation varied (iconic/numerical), 
while the equation with one unknown remained invariant. 
Besides the possibility of discerning a visual representation 
of the cancellation method, it was also made possible to 
discern that x could be a number of objects (stones).

4.2.3 � Equations that you cannot solve

In Task 3, two equations, 3x + 20 = 5 and 2x + 3 = 3x + 4, 
were discussed and found to be non-solvable for posi-
tive integers. The invariant feature in these examples was 
that the equations were unsolvable for positive integers, 
whereas the equations and numbers in the equations varied. 
We suggest that from these examples, and in contrast to the 
equations in previous tasks, it was made possible to discern 
that some equations with one unknown cannot be solved for 
positive integers.

4.2.4 � Solving different equations

In the last part of the lesson, in Task 4, two equations with 
one unknown were made from word problems and solved 
one after another. No comparison was made between the 
two problems. The first problem was about a person buying 
things in a shop,2 and the second was about the relation 
between three sisters’ ages.3 The two equations, 
x ÷ 3 + 495 = 1975 and 3x + (x + 5) + x = 40, varied in regard 

2  A person spends one-third of his savings on one cd player and 3 cds 
for 165 sek/cd. He paid 1975 sek. How much money did he have in 
savings?
3  Three sisters are 40 years together. The middle sister is 5 years 
older than the little sister. This year the oldest sister is 3 times as old 
as the little sister is. How old are the sisters?

to the context (price, age), the operations used in the equa-
tions (addition, division) and the numbers in the equations. 
The same method (invariant) was used to solve them. 
Hence, it was made possible to discern that equations with 
one unknown can represent different situations and solve 
different problems.

4.3 � Lesson 2

Our analysis of Lesson 2 suggests that the enacted object of 
learning emphasized understanding equations, their struc-
ture and how different operations (addition, subtraction, 
multiplication and division) affect an equation. (In Lesson 
1, operations were used when solving equations with one 
unknown without attention being drawn to this aspect.) The 
answers to the three equations presented during the lesson 
were already known from the start. In Task 5, the teacher 
used the same equation (3 + 4 = 7) to create three different 
equations with one unknown (Fig. 2). First, by substituting 
3 with x the equation x + 4 = 7 was created. In the second 
equation, x is varied when 4 (in 3 + 4 = 7) was substituted 
with 2 × (3 + 2x = 7). In the third equation 3 + 4 = 7 remains 
the starting point from which x is varied again, when 3 is 
substituted (with 6x ÷ 4) in the equation  6x ÷ 4 + 4 = 7. It 
was made possible for students to see the creation of an 
equation with unknown numbers and the solving process 
for that equation simultaneously. Therefore in Lesson 2, the 
focus of attention was not primarily on finding the answer, 
but instead on understanding what an equation is, by vary-
ing x and the operations used in the solving process. In the 
following section, we illustrate our analysis, starting with 
Task 1.

4.3.1 � Equality represented by different operations

Task 1 brought out, in a similar way to L1, the meaning of 
the equal sign/equality by varying equality and inequality. 
However, in L2, more sets of examples illustrate this, and 
the numbers used in one set of examples remained invariant 
(e.g. 6 × 4), varying different operations and equations. In 
L2, the first two examples illustrated inequality, compared 
to L1 in which equality was the starting point. So, in L2 the 
starting point was a contrast between an incorrect (‘to show 
steps in a calculation process’) and a correct way to use the 
equal sign.

1.	 12 × 4 ≠ 48 ÷ 2 = 24
2.	 6 × 4 ≠ 24 ÷ 2 = 12
3.	 6 × 4 = 48 ÷ 2 = 24
4.	 6 × 4 = 12 × 2 = 24
5.	 6 + 2 = 8
6.	 6 + 2 ≠ 8 ÷ 2 = 4

Fig. 1   Variation in representa-
tion (numerical and iconic) of 
the solving process of the same 
equation (Task 2). Note: five 
stones on both sides of the scale 
have been erased as the first step 
in the solving process
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It was made possible to discern that, although repre-
sented differently, all parts of the equation must have the 
same value in order for the equal sign to be used correctly. 
Hence similar dimensions of variation were opened in L2 
(Task 1) and in L1 (Task 1).

4.3.2 � Equality represented by different operations

Task 2 was about addition and multiplication and focused 
on representation and the difference between multiplication 
with integers and multiplication with x. Two examples, one 
with integers and one with x were contrasted to show how 
3 + 3 + 3 + 3 = 4 × 3 is not 43, whereas x + x + x + x = 4 × x is 
the same as 4x. Hence the representation of the same num-
ber value varied, keeping the multiplier (4) and x invariant. 
It was made possible to discern that when representing the 
multiplicand with x, the multiplication sign can be omitted. 
Moreover, it was possible to discern that a known number 
could be replaced by x.

4.3.3 � Equality handled by different operations

How operations change or maintain the equality in an equa-
tion became a highlighted theme in Tasks 3 and 4 and this, 
we would suggest, was accomplished by systematic varia-
tion between examples. In Task 3 (see below), four exam-
ples show how multiplication and division with the same 
number affects the equation.

1.	 5 × 3 ÷ 5 = 15 ÷ 5 = 3
2.	 5 × 3 ÷ 3 = 15 ÷ 3 = 5
3.	 6 × 4 ÷ 6 = 4
4.	 6x ÷ 6 = x

In the first two examples, 5 × 3 ÷ 5 = 15 ÷ 5 = 3 and 
5 × 3 ÷ 3 = 15 ÷ 3 = 5, the factors (5 and 3) remain invari-
ant, with only the divisor varying. In the first example, 
5 divided the factors, whereas in the second example 3 
divided them. This was further explored when one student 
asked for another example to verify the teacher’s statement 
“If you have a number (5) and you multiply that number by 
another number (×3) and then divide by one of the num-
bers (e.g., ÷ 5) you will get the other number back (3)”. So, 
when a new example, this time with quite different num-
bers, 6 × 4 ÷ 6 = 4, was given, again it was made possible to 
experience multiplication and division with the same num-
ber (factor/divisor). The last equation 6x ÷ 6 = x is similar to 
6 × 4 ÷ 6 = 4; in this case 4 is used instead of x in the equa-
tion. From the examples enacted, it was made possible to 
discern that multiplying and dividing by the same number 
does not change the value. In the same way as in Task 2, it 
was made possible to discern that a known number could 
be replaced by x.

4.3.4 � Properties of equality

How to operate on an equation/equality was further dis-
cussed in Task 4 (see below). However, in Task 4, this 
involved addition, subtraction and multiplication. The equa-
tion 3 + 4 = 7 remained invariant through the five examples, 
whereas the operations varied between them.

1.	 3 + 4 = 7
2.	 2 + 3 + 4 = 7 + 2
3.	 2 + 3 + 4–5 = 7 + 2–5
4.	 2 × 3 + 4 ≠ 7 × 2
5.	 2 × 3 + 4 × 2 = 7 × 2

Fig. 2   The same equation is 
used to create and solve three 
different equations with one 
unknown in L2: illustration of 
the white board (Task 5)
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It was demonstrated that equality can be maintained 
although the equation is operated on, drawing attention to 
the additive property of equality (a + c = b + c), the multi-
plication property of equality (a × c = b × c), and the dis-
tributive property a×(b + c)=(a × b)+(a × c). Operations 
with addition and subtraction were compared to opera-
tions with multiplication. When changing from the exam-
ple 2 + 3 + 4–5 = 7 + 2–5, to multiplying 3 + 4 = 7 by 2 into 
2 × 3 + 4 ≠ 7 × 2, it was made possible to notice the distribu-
tive property (2 × 3)+(4 × 2) = 7 × 2. Hence, it was made 
possible to discern that the same operation needs to be car-
ried out on both sides of the equal sign in order to main-
tain the equality, and that in multiplication both addends 
on each side need to be operated on. We can see that the 
changes between the examples are few and systematic.

4.3.5 � Creating and solving equations

In Task 5, one equation, 3 + 4 = 7, was used to create and 
solve three different equations (see Fig.  2, and below) 
with one unknown. As has previously been argued, the 
three equations made it possible for students to focus on 
the structure of the equation and the process for solving it 
rather than on finding an answer.

1.	 x + 4 = 7
2.	 3 + 2x = 7
3.	 6x ÷ 4 + 4 = 7

The value that x could have varied, whereas the other 
parts of the equation and the method of solving were invari-
ant. It was made possible to discern how different equations 
with one unknown can be made from the same equation.

4.4 � Different learning possibilities

Even though the teacher taught the same topic in both les-
sons, we suggest that L1 and L2 made different dimensions 
of variation (aspects) possible to discern, and therefore 
made it possible to learn different things. In L1, the dimen-
sions of variation concerned mainly: (1) the meaning of the 
equal sign/equality (=, ≠), (2) representation (iconic, sym-
bolic), (3) non-solvable equations (solvable, non-solvable), 
(4) context (stones, price, age), in regard to solving equa-
tions with one unknown. In L2, the dimensions of varia-
tion instead concerned: (1) the equal sign/equality (=, ≠), 
(2) representation of an equation/an unknown (multiplica-
tion by an integer, multiplication by x), (3) operating on the 
equality (multiplication, division), (5) properties of equal-
ity (additive, multiplication), and (5) how equations can be 
made (what x represents varied). The dimensions of varia-
tion opened up, in L1 and L2 respectively, made it possi-
ble for the students to experience two quite diverse objects 

of learning. In L1, the object of learning was primarily the 
method and procedure for solving, whereas in L2 it was 
instead about understanding the structure of equations. 
The teacher’s articulation of what he wanted the learners 
to learn supports our analysis that there were two different 
objects of learning.

The analysis shows that in L1 and L2, the unknown x is 
handled in different ways. In L1, the unknown number in 
the equation is the starting point and thus, the x-value is to 
be calculated. In L2, it is the other way around. In Task 2, 
a known number (3) is replaced by x. In the same way, in 
Task 3, the number 4 in 6 × 4 ÷ 6 = 4 is substituted with x 
to give 6x ÷ 6 = x. In Task 5, the teacher created three equa-
tions with one unknown based on the equation  3 + 4 = 7. 
We suggest that knowing the value of x in Task 5 from 
the start, and not having to calculate x, made it possible to 
focus on the structure of the equations in L2 and not pri-
marily on the answers.

However, we want to remark that we cannot draw 
conclusions about whether the dimensions of variation 
(aspects) enacted in the lessons were actually critical for 
students’ learning. This has not been studied and is not 
within the scope of this paper. There might be other aspects 
that these students need to discern in order to learn the 
required ability. We can only conclude that the two lessons 
offered two quite different possibilities for learning, since 
different dimensions of variation were opened up and thus 
were made possible to experience.

5 � Concluding remarks

As the variation theory of learning has the aim of reveal-
ing the necessary conditions for learning in specific cases, 
it also can be used to envisage what it is possible to learn 
with one lesson design or with another, and in consequence 
if you can make a statement about what it is possible to 
learn, then you may even understand why students fail to 
learn. In this paper we have analyzed what is made possi-
ble to learn in two lessons. We find it necessary to make a 
distinction between learning that happens through teaching, 
on the one hand, and learning made possible through teach-
ing, on the other hand. This distinction is useful if you want 
to, for example, develop a lesson design, or analyze lessons 
as in the empirical illustration in this paper. The analysis 
of what is made possible to learn also sheds light on what 
is not made possible to learn. For instance, from a varia-
tion theory perspective, it was not made possible to discern 
the distributive property in L1 since this was not brought 
up as a dimension of variation, whereas in L2 it was made 
possible to experience this through contrast (difference) 
between 2 × 3 + 4 ≠ 7 × 2 and (2 × 3)+(4 × 2) = 7 × 2. Mar-
ton (2015) suggests, “A necessary condition for finding 
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and experiencing a certain aspect of an object of learning 
is that the learner has the opportunity to encounter differ-
ences in the relevant dimension of variation” (p. 128). The 
learner herself, a teacher, other students, a task, or a set of 
examples could make it possible for the learner to experi-
ence differences (as well as similarities) in relation to criti-
cal aspects. Well-designed tasks and examples, however, 
are usually insufficient for learning. In addition to exam-
ple sequences that incorporate certain patterns of variation 
(differences) and invariance (similarities), it is important 
that teaching draws attention to those patterns (Kullberg 
et al. 2014). We want to acknowledge, however, that there 
is not a one-to-one-correspondence between teaching and 
learning. Even if it is made possible to learn certain things 
in a lesson, students may not learn. Their attention may not 
be attuned to the dimensions opened; it may be directed at 
other things going on in the classroom or in the students’ 
minds, for instance.

The empirical illustration in this paper, about analysis 
of teachers’ use of examples only, is non-typical for this 
research tradition. With regard to the empirical illustration, 
we do not suggest that lessons can be reduced to the exam-
ples chosen by the teacher. Analysis of tasks and examples 
can say something about what is made possible to discern 
and about necessary conditions for learning, but is, how-
ever, not sufficient in itself. Most often studies using this 
framework also analyze teaching, students’ contributions 
during lessons, and students’ learning, as a whole. Never-
theless, the empirical illustration sheds light on an impor-
tant distinction that we find useful when it comes to analyz-
ing teaching and learning in classroom settings.

5.1 � Future research

We advocate that analyzing what is made possible to learn 
can also say something about what is not made possible to 
learn. This in turn can say something about why students 
in school are not learning what the teacher intends them to 
learn. We suggest that what the critical aspects are for dif-
ferent groups of learners and for different objects of learn-
ing needs to be further explored. It is, however, not ben-
eficial for learning to only tell students about the identified 
critical aspects, since these aspects need to be experienced 
(Kullberg 2010; Marton and Tsui 2004). Therefore, future 
research needs to take into account both what aspects are 
made possible to discern in a lesson, as well as how they 
are enacted in the interaction with the students.

5.2 � Recommendations for mathematics educators

It cannot be derived from the variation theory of learning 
how specific content should be handled in the classroom, 
what the critical aspects are, or what examples to use when 

teaching. It is the teachers who have to decide what needs 
to come to the fore of students’ attention, what the criti-
cal aspects might be and how these can become visible for 
learners.

The theory can, however, serve as a tool for teachers 
when they plan and enact teaching. The theory offers tools 
that teachers can use to focus on the mathematical content 
taught, students’ understanding of it and how to enable pos-
sibilities for learning. Theoretical concepts like the object of 
learning and its critical aspects can help educators to focus 
on the ability to be learned, and on what students need to 
learn in order to do so. Another important idea within the 
theory is how we can help learners to notice what we want 
them to discern. If an aspect that we want our students to 
notice is varied against an invariant background, it is more 
likely that students will discern it (Marton and Pang 2013). 
As stated previously, variation and invariance in teaching 
does not guarantee learning; it can, at best, make it possible 
for learning to happen.
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